32 research outputs found

    Magnetic equivalent circuit model of surface type fractional-slot permanent magnet synchronous generator

    Get PDF
    Design of permanent magnet synchronous machines becomes more of an issue for all systems lately. There are many parameters that have influence for machine design. Each parameter should have optimized and their effects on the system should be determined. Any desired pre-design have been done for machine design except a few paper and it only showed by of Finite element analysis (FEA). In this article, analytical method is used in permanent magnet synchronous machine design and the effects of geometric on the performance of machine are presented. Magnetic equivalent circuit (MEC) model is used as numeric method. It is observed that the proposed MEC model is pertinent to Speed PC-BDC model and FEA. Besides proposed MEC model provides to calculate performances of the machines which have the desirable slot/pole combinations correctly. Proposed model is applied on the recently increased fractional slot direct drive synchronous generators

    Dynamics and torque analysis of permanent magnet synchronous generator with soft magnetic composite material

    Get PDF
    Usage of permanent magnet synchronous machines (PMSM) in wind turbines recently became more of an issue. The development in permanent magnet synchronous machines through the latest technologies, especially about machine design, increases the importance of those machines. Developments in materials technology implement the development of cost effective and profitable products on electric machines and bring simplicity in design. Especially Soft Magnetic Composite (SMC) materials became to be used recently in machine designs due to its advantages such as low costs and providing 3D flux paths. In this work the 2D magnetic equivalent circuit (MEC) of PMSM machine, which includes SMC in its stator part, was composed and stated magnetic equivalent circuit was verified by finite element method. Also torque and radial forces of PMSM were calculated as well. When SMC materials are used in electric machines, flux flows in 3D. 3D finite element method takes quite long time. Due to 2D MEC analysis that was used in our work, the analysis periods become remarkably shorter. Besides the proposed MEC model enables to calculate performances of the machines, which have the desirable slot/pole combinations, correctly. Proposed model is applied on the recently improved fractional slot direct drive synchronous generators

    Safe Trajectory Sampling in Model-Based Reinforcement Learning

    Get PDF
    Model-based reinforcement learning aims to learn a policy to solve a target task by leveraging a learned dynamics model. This approach, paired with principled handling of uncertainty allows for data-efficient policy learning in robotics. However, the physical environment has feasibility and safety constraints that need to be incorporated into the policy before it is safe to execute on a real robot. In this work, we study how to enforce the aforementioned constraints in the context of model-based reinforcement learning with probabilistic dynamics models. In particular, we investigate how trajectories sampled from the learned dynamics model can be used on a real robot, while fulfilling user-specified safety requirements. We present a model-based reinforcement learning approach using Gaussian processes where safety constraints are taken into account without simplifying Gaussian assumptions on the predictive state distributions. We evaluate the proposed approach on different continuous control tasks with varying complexity and demonstrate how our safe trajectory-sampling approach can be directly used on a real robot without violating safety constraints

    Magnetic equivalent circuit model of surface type fractional-slot permanent magnet synchronous generator

    Get PDF
    Design of permanent magnet synchronous machines becomes more of an issue for all systems lately. There are many parameters that have influence for machine design. Each parameter should have optimized and their effects on the system should be determined. Any desired pre-design have been done for machine design except a few paper and it only showed by of Finite element analysis (FEA). In this article, analytical method is used in permanent magnet synchronous machine design and the effects of geometric on the performance of machine are presented. Magnetic equivalent circuit (MEC) model is used as numeric method. It is observed that the proposed MEC model is pertinent to Speed PC-BDC model and FEA. Besides proposed MEC model provides to calculate performances of the machines which have the desirable slot/pole combinations correctly. Proposed model is applied on the recently increased fractional slot direct drive synchronous generators

    Dynamic Analysis of Permanent Magnet Synchronous Generator with Power Electronics

    No full text
    Permanent magnet DC motor-generators (PMDC, PMSG) have been widely used in industrial and energy sectors recently. Power control of these systems can be achieved by controlling the output voltage. In this study, PMDC-PMSG systems are mathematically modeled and simulated in MATLAB and Simulink software. Then the results are discussed. A low power permanent magnet synchronous generator is driven by a permanent magnet DC motor and the output voltage is controlled by a frequency cycle-converter. The output of a half-wave uncontrolled rectifier is applied to an SPWM inverter and the power is supplied to a 300V, 50Hz load. The load which is connected to an LC filter is modeled by state-space equations. LC filter is utilized in order to suppress the voltage oscillations at the inverter output
    corecore